The water cycle, also known as the hydrological cycle, is the continuous exchange of water between land, waterbodies, and the atmosphere. Approximately 97% of the earth’s water is stored in the oceans, and only a fraction of the remaining portion is usable freshwater. When precipitation falls over the land, it follows various routes. Some of it evaporates, returning to the atmosphere, some seeps into the ground, and the remainder becomes surface water, traveling to oceans and lakes by way of rivers and streams. Impervious surfaces associated with urbanization alter the natural amount of water that takes each route. The consequences of this change are a decrease in the volume of water that percolates into the ground, and a resulting increase in volume and decrease in quality of surface water. These hydrological changes have significant implications for the quantity of fresh, clean water that is available for use by humans, fish and wildlife.

Why is the Water Cycle Important?

Impervious Cover (IC):
all hard surfaces that do not allow water to penetrate the soil, such as rooftops, driveways, streets, swimming pools, and patios

More Water Faster

Developed Lands
Rain pours more quickly off of city and suburban landscapes, which have high levels of impervious cover

Natural Lands
Trees, brush, and soil help soak up rain and slow runoff in undeveloped landscapes

Figure 1 (left) illustrates how impervious cover and urban drainage systems increase runoff to creeks and rivers. The larger volume, velocity and duration of flow acts like sandpaper on stream banks, intensifying the erosion and sediment transport from the landscape and stream banks. This often causes channel erosion, clogged stream channels, and habitat damage.

Figure 2 The hydrograph (left) illustrates stormwater peak discharges in a urban watershed (red line) and a less developed watershed (yellow line). In watersheds with large amounts of impervious cover, there is a larger volume and faster rate of discharge than in less developed watersheds, often resulting in more flooding and habitat damage.

Adapted from Santa Clara Hydromodification Management Plan

Graphic Sacramento Bee

An educational program for land use decision makers that addresses the relationship between land use and natural resource protection.
Figure 2. How impervious cover affects the water cycle.

With natural groundcover, 25% of rain infiltrates into the aquifer and only 10% ends up as runoff. As imperviousness increases, less water infiltrates and more and more runs off. In highly urbanized areas, over one-half of all rain becomes surface runoff, and deep infiltration is only a fraction of what it was naturally.

The increased surface runoff requires more infrastructure to minimize flooding. Natural waterways end up being used as drainage channels, and are frequently lined with rocks or concrete to move water more quickly and prevent erosion.

In addition, as deep infiltration decreases, the water table drops, reducing groundwater for wetlands, riparian vegetation, wells, and other uses.

Figure 3. Relationship between imperviousness and stream quality.

In most cases, when impervious cover (IC) is less than 10% of a watershed, streams remain healthy. Above 10% impervious cover, common signs of stream degradation are evident. They include:

- Excessive stream channel erosion (bed and bank)
- Reduced groundwater recharge
- Increased size and frequency of 1-2 year floods
- Decreased movement of groundwater to surface water
- Loss of streambank tree cover
- Increased contaminants in water
- Increased fine sediment in stream bed
- Overall degradation of the aquatic habitat

Pictures from different reaches of Secret Ravine Creek, Placer County, California
California Examples

Studies on urban streams across California have consistently found similar patterns of degradation. For example, in Los Penasquitos Creek in San Diego County, watershed development grew from 9% to 37% urbanization between 1966-2000. From 1973-2000, the total annual urban runoff in the upper watershed increased by 4% per year, resulting in more than a 100% increase in runoff for the measured time period. The flood magnitude for the 1-2 year storm also increased by more than 5 fold from 1965-2000.

The impact of 44% impervious cover on a variety of hydrological parameters on Thompson Creek were predicted during a random seven-day period. 50 years worth of data was used in the modeling process. The most obvious difference between the pre and post development conditions is the significantly greater volume of runoff generated after development, as seen in the above graph. Whereas pre-development flows were typically at flow rates that would not cause bank erosion (green line), post-development flows mainly exceeded the flow needed to destabilize stream banks. Further, post-development flows, in contrast to pre-development flows, would regularly exceed the historic 2-year storm event.

The impacts of these altered conditions are degradation of the aquatic habitat and increased frequency of flood events. In the Thompson Creek sub-watershed, hydrologists also found that the increased imperviousness associated with development approximately doubled stormwater runoff for peak discharges for 2, 5, and 10-year storm event. Results in this watershed and elsewhere have shown that the 0 – 10 year storms are the events that overwhelmingly alter the shape and size of streams. Thus, doubling of the rate of runoff will have significant impacts on aquatic resources as well as the risk of flooding.
In a Nutshell

Increased impervious cover associated with urbanization alters the natural cycling of water. Changes in the shape and size of urban streams, followed by decreased water quality, are the most visible effects of increased imperviousness. Greater frequency and severity of flooding, channel erosion, and destruction of aquatic habitat commonly follow watershed urbanization. Alterations in the aquatic environment associated with these hydrological changes greatly compromise the normal functioning of our waterways.

References