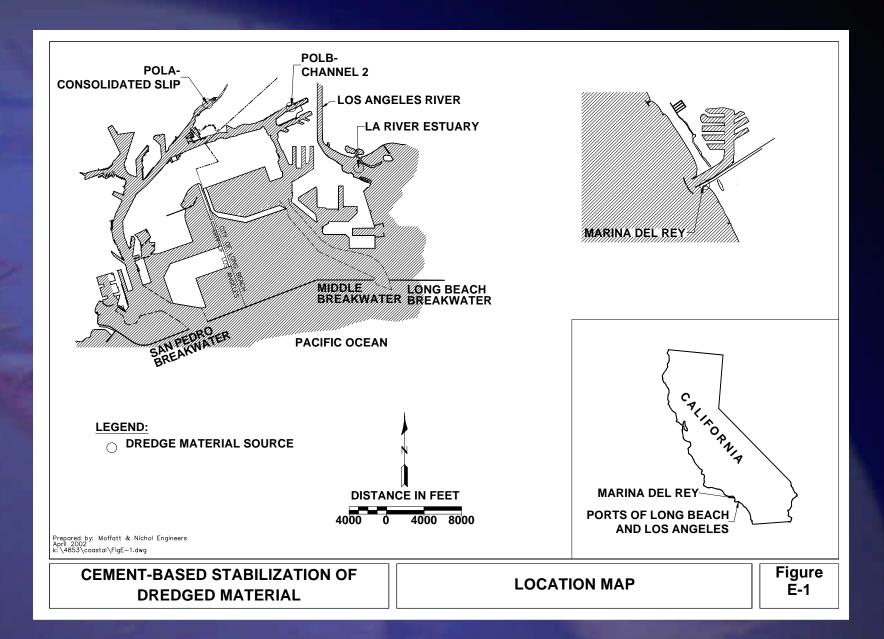
CSTF AQUATIC SUBCOMMITTEE MEETING

CEMENT STABILIZATION OF CONTAMINATED DREDGED MATERIAL

BENCH SCALE STUDY

Russell H. Boudreau, P.E. Moffatt & Nichol Engineers


HEARTWELL PARK NOVEMBER 12, 2002

BENCH STUDY OVERVIEW

- Assess Application of Cement Based Stabilization (CBS) Technology to Regional Dredged Material
- Consider Range of Sediment Types and Levels of Contamination
- Analyze Ability to (1) Bind Contaminants and (2) Improve Physical Properties through Extensive Chemical and Physical Testing Program
- Determine Effectiveness of More Economical Reagents than Cement Alone

WHAT IS CEMENT BASED STABILIZATION TECHNOLOGY?

- Treatment of radioactive wastes from weapons and fuel programs
- Treatment of industrial wastes including oil and chemical wastes
- Addition of reagents causes solidification (physical) and stabilization (chemical)
- Solidification increases strength and decreases permeability
- Stabilization changes chemical structure rendering the hazardous components less soluble and less toxic
- Successful treatment of over 4 million cubic yards of contaminated dredged material

REGIONAL DREDGED SEDIMENT CHARACTERISTICS

- Marina del Rey coarse sandy material with shells & debris - strong sulfide odor
- LA River Estuary sand (less coarse than MdR) strong odor
- POLB Channel Two clay with shells strong odor
- POLA Consolidated Slip oily clay material strong sulfide & organic odor

SELECTED REAGENTS

REAGENT	\$/Ton Range for So.CA					
Type II Portland Cement	\$67 to \$82					
Type F Fly Ash	\$32 to \$36					
Fluidized Bed Ash	\$17 to \$20					

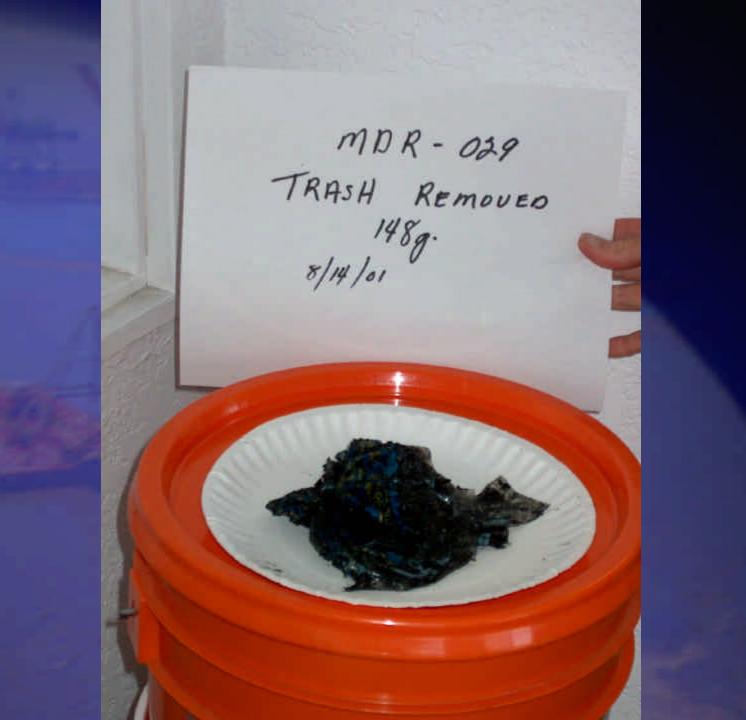
REAGENT TEST COMBINATIONS

SITE	REAGENT	REAGENT MIXTURE									
		(Percent by Weight)									
ALL (Base Case)	Type II Cement	8	6	4	6	4	2	6	4	2	Raw
	Type F Ash							4	6	8	
	FB Ash				6	8	10	2	4	6	

Additional tests included 2% cement w/ and w/o 2% Type F Fly Ash

BENCH SCALE TEST PROGRAM

- Upper limit to prevent loss of contaminants and improve strength
- Lower limit to show some improvement in binding and strength
- Median to be approximate mid-point
- 3 reagents at 3 percentages results in 9 combinations per site
- Full suite of testing for LARE; median for other sites
- Reduced suite for all other combinations



PHYSICAL TESTING PROGRAM

- Grain Size
- Atterberg Limits
- Compaction
- Consolidation
- Permeability
- Unconfined Compressive Strength
- Direct and Vane Shear

CHEMICAL TESTING PROGRAM

- Bulk Chemistry
- Conventionals
- Waste Extraction Test (WET)
- Synthetic Precipitation Leaching Procedure (SPLP)
- Pore Water Salinity

KEY PHYSICAL TEST RESULTS -MDR & LARE

- Already possess good engineering qualities (93% & 89% sand, respectively)
- Produced "set times" of 5-10 hours
- Improved unconfined compression & shear strength
- Minimum impact on compaction, compressibility and permeability

KEY PHYSICAL TEST RESULTS -POLB

- 16% sand
- Set time reduced to less than 1 day
- Improved shear strength
- Increase permeability improved drainage
- No improvement to compressibility
- Mixes with best combination of engineering properties:
 - 4% cement / 8% FB
 - 4% cement / 6% TF / 4% FB

KEY PHYSICAL TEST RESULTS -POLA

- 10% sand
- Set time reduced to less than 12 hours for higher cement contents
- Improved shear strength
- Increase permeability improved drainage
- Reduced compressibility
- Mix with best combination of engineering properties:
 - 4% cement / 8% FB

KEY RESULTS - CHEMICAL ANALYSIS

- All raw sediments exceeded ER-M values in at least 1 category; POLA had 23
- No raw sediments exceeded TTLC values
- No raw or stabilized extracts exceeded STLC values
- Results indicate none of the samples (raw or treated) would be considered hazardous waste under California Title 22 criteria
- Blends with 4% or more cement bound contaminants better

CONCLUSIONS & RECOMMENDATIONS

- CBS improved ability to manage material in timely manner
- High fines and low density may limit applicability of POLB, POLA sediments
- Cost projected at \$45/cy dredging through treatment; \$7 for reagent purchase
- Recommendations:
 - more aggressive pH?
 - test material with more contaminants of concern (eg DDT)
 - market study for potential end users