
# **Extent of Thermal Hazards Predicted** in Four Recent LNG Carrier Spill Studies

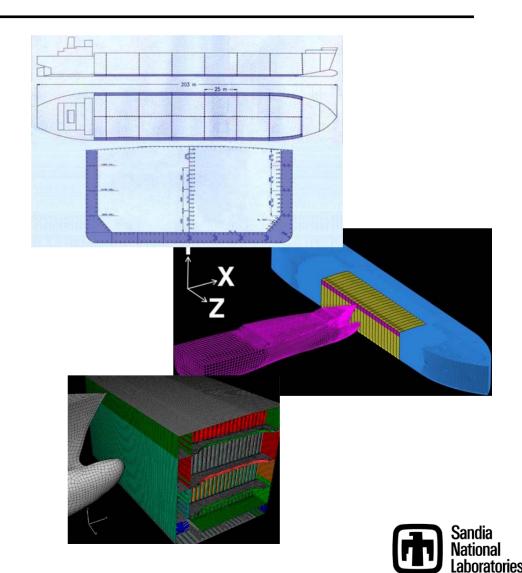




#### Suggested Risk-based Assessment Approach for LNG Carrier Spills






#### Safety and Consequence Analyses

- Evaluated several breaching events
  - Collisions, groundings, impacts
  - Sabotage and possible attacks
- Evaluated consequences from LNG spills
  - Fire, vapor dispersion, explosions
- Evaluated possibility of cascading damage
  - Cryogenic damage from a spill
  - Thermal damage to structures and LNG vessel from a fire
- Identified high, medium, and low consequence zones for range of possible spills



### Analysis of Accidental Breaching of Double Hull Tanker

- LNG tankers designs are robust
- Breaching conditions vary by site
- An LNG container breach can have various results
  - Spill onto water, spill between double hulls, etc.
- Analysis was based on large, 3- D, finite element model results



## Analysis of Intentional Breaching of LNG Cargo Tanks

- Assessed "credible threats"
  - Plausible with knowledge and resources
  - Historically observed
- Coordinated analysis with government agencies
- Analysis conducted using modern modeling tools







### Summary of Accidental and Intentional LNG Cargo Tank Breach Analyses

- Accidental breach hole sizes of up to 1.5 m<sup>2</sup>
  (1.3 m diameter) possible
  - No breach for collisions with small boats
  - Conditions for accidental breach unlikely at many sites
  - Current accident safety measures appropriate and effective
- Intentional breach hole sizes of <2 m² up to 12 m² (<1.6 m to 4 m diameter) possible</li>
  - Nominal breach size ~5 m<sup>2</sup> (2.5 m diameter), smaller than used in many studies
  - Cryogenic damage to ship possible for large spills
- Most events are expected to have an ignition source



#### Nominal Conditions Used for Spill, Thermal, and Dispersion Analyses

- Spill of 12,500 m<sup>3</sup> per cargo tank
- Liquid height of 15 m above the breach
- Used nominal spill conditions
  - Nominal wind and wind speed
  - General discharge and orifice flow parameters
  - Common data for burn rates, surface emissive power, etc.
- Nominal sensitivity analysis of experimental data variation on hazard results
- Cascading damage hazards considered



### Thermal Damage and Consequence Considerations

- Two thermal hazard evaluation criteria were considered
  - 35 kW/m² (major structural damage in 10 minutes)
  - 5 kW/m² (2<sup>nd</sup> degree burns in 30 seconds, NFPA Standard for land-based LNG)
- LNG Foam insulation degradation
  - Some LNG insulation materials (foams) degrade and decompose around 600-800°F
  - Without safety systems operating, top-side foam insulation decomposition on the order of 5 minutes during a fire
- Fires longer than 5 minutes assessed and sequential, cascading cargo tank failures evaluated



## Thermal Hazard Analysis Results for Accidental LNG Breaches and Spills

| HOLE<br>SIZE<br>(m²) | TANKS<br>BREACHED | DISCHARGE<br>COEFFICIENT | BURN<br>RATE<br>(m/s) | SURFACE<br>EMISSIVE<br>POWER<br>(kW/m²) | POOL<br>DIAMETER<br>(m) | BURN<br>TIME<br>(min) | DISTANCE<br>TO 37.5<br>kW/m <sup>2</sup><br>(m) | DISTANCE<br>TO 5<br>kW/m <sup>2</sup><br>(m) |
|----------------------|-------------------|--------------------------|-----------------------|-----------------------------------------|-------------------------|-----------------------|-------------------------------------------------|----------------------------------------------|
| 1                    | 1                 | .6                       | 3X10 <sup>-4</sup>    | 220                                     | 148                     | 40                    | 177                                             | 554                                          |
| 2                    | 1                 | .6                       | 3X10 <sup>-4</sup>    | 220                                     | 209                     | 20                    | 250                                             | 784                                          |
| 2                    | 3                 | .6                       | 3X10 <sup>-4</sup>    | 220                                     | 362                     | 20                    | 398                                             | 1358                                         |

Uses nominal input parameters from existing data Simultaneous, multiple tank damage highly unlikely



# Estimated Impacts to Public Health and Safety from Accidental Spills

|                                   | POTENTIAL<br>SHIP                                                           | POTENTIAL                                                               | POTENTIAL IMPACT ON PUBLIC SAFETY <sup>a</sup> |                          |                              |  |  |
|-----------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|--------------------------|------------------------------|--|--|
| EVENT                             | DAMAGE AND<br>SPILL                                                         | HAZARD                                                                  | ~250 m                                         | ~250 – 750 m             | >750 m                       |  |  |
| Collisions:<br>Low speed          | Minor ship<br>damage, no<br>breach                                          | Minor ship<br>damage                                                    | Low                                            | Very Low                 | Very Low                     |  |  |
| Collisions:<br>High<br>Speed      | LNG cargo<br>tank breach<br>from<br>0.5 to 1.5 m <sup>2</sup><br>spill area | <ul><li>Small fire</li><li>Damage to ship</li><li>Vapor Cloud</li></ul> | High<br>Med<br>High                            | Med<br>Low<br>High - Med | Low<br>Very Low<br>Med - Low |  |  |
| Grounding:<br><3 m high<br>object | Minor ship<br>damage, no<br>breach                                          | Minor ship<br>damage                                                    | Low                                            | Very Low                 | Very Low                     |  |  |

Very low – little or no property damage or injuries Low – minor property damage and minor injuries Medium – potential for injuries and property damage High – major injuries and significant damage to property

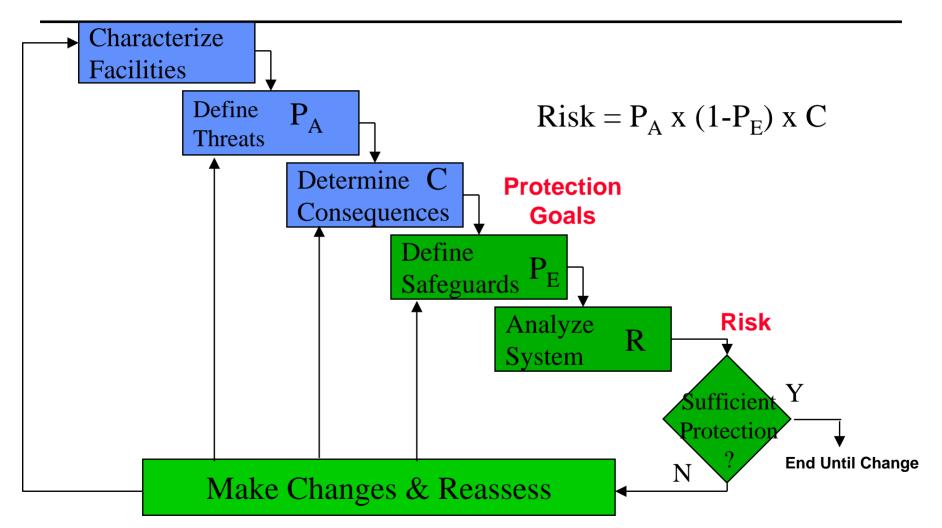


# Thermal Hazard Analysis Results for Intentional LNG Breaches and Spills

| HOLE<br>SIZE<br>(m²) | TANKS<br>BREACH | DISCHARGE<br>COEFF. | BURN<br>RATE<br>(m/s) | SURFACE<br>EMISSIVE<br>POWER<br>(kW/m²) | TRANS-<br>MISSIV-<br>ITY | POOL<br>DIA.<br>(m) | BURN<br>TIME<br>(min) | DISTANCE<br>TO 37.5<br>kW/m <sup>2</sup><br>(m) | DISTANCE<br>TO 5 kW/m <sup>2</sup><br>(m) |
|----------------------|-----------------|---------------------|-----------------------|-----------------------------------------|--------------------------|---------------------|-----------------------|-------------------------------------------------|-------------------------------------------|
| 2                    | 3               | .6                  | 3 x 10 <sup>-4</sup>  | 220                                     | 0.8                      | 209                 | 20                    | 250                                             | 784                                       |
| 5                    | 3               | .6                  | 3 x 10 <sup>-4</sup>  | 220                                     | 0.8                      | 572                 | 8.1                   | 630                                             | 2118                                      |
| 5*                   | 1               | .6                  | 3 x 10 <sup>-4</sup>  | 220                                     | 0.8                      | 330                 | 8.1                   | 391                                             | 1305                                      |
| 5                    | 1               | .9                  | 3 x 10 <sup>-4</sup>  | 220                                     | 0.8                      | 405                 | 5.4                   | 478                                             | 1579                                      |
| 5                    | 1               | .3                  | 3 x 10 <sup>-4</sup>  | 220                                     | 0.8                      | 233                 | 16                    | 263                                             | 911                                       |
| 5                    | 1               | .6                  | 2 x 10 <sup>-4</sup>  | 220                                     | 0.8                      | 395                 | 8.1                   | 454                                             | 1538                                      |
| 5                    | 1               | .6                  | 8 x 10 <sup>-4</sup>  | 220                                     | 0.8                      | 202                 | 8.1                   | 253                                             | 810                                       |
| 5                    | 1               | .6                  | 3 x 10 <sup>-4</sup>  | 175                                     | 0.8                      | 330                 | 8.1                   | 314                                             | 1156                                      |
| 5                    | 1               | .6                  | 3 x 10 <sup>-4</sup>  | 350                                     | 0.8                      | 330                 | 8.1                   | 529                                             | 1652                                      |
| 12                   | 1               | .6                  | 3 x 10 <sup>-4</sup>  | 220                                     | 0.8                      | 512                 | 3.4                   | 602                                             | 1920                                      |

\*Nominal case: Expected outcomes of a potential breach and thermal hazards based on credible threats and best available experimental data




# Estimated Impacts to Public Health and Safety from Intentional Spills

|                                | POTENTIAL                                                                     | BATENITIAL                             | POTENTIAL IMPACT ON PUBLIC SAFETY <sup>a</sup> |               |          |  |  |
|--------------------------------|-------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------|---------------|----------|--|--|
| EVENT                          | SHIP<br>DAMAGE<br>AND SPILL                                                   | POTENTIAL<br>HAZARD                    | ~500 m                                         | ~500 – 1600 m | >1600 m  |  |  |
|                                | Intentional,<br>2-7 m <sup>2</sup> breach<br>and medium to<br>large spill     | <ul><li>Large fire</li></ul>           | High                                           | Med           | Low      |  |  |
|                                |                                                                               | <ul><li>Damage to<br/>ship</li></ul>   | High                                           | Med           | Low      |  |  |
| Insider Threat<br>or Hijacking |                                                                               | <ul><li>Fireball</li></ul>             | Med                                            | Low           | Very Low |  |  |
|                                |                                                                               | <ul><li>Large fire</li></ul>           | High                                           | Med           | Low      |  |  |
|                                | Intentional,<br>large release<br>of LNG                                       | <ul><li>Damage to<br/>ship</li></ul>   | High                                           | Med           | Low      |  |  |
|                                |                                                                               | <ul><li>Vapor<br/>cloud fire</li></ul> | High                                           | High - Med    | Med ium  |  |  |
|                                | Intentional,<br>2-12 m <sup>2</sup><br>breach and<br>medium to<br>large spill | ■ Large fire                           | High                                           | Med           | Low      |  |  |
| Attack on<br>Ship              |                                                                               | <ul><li>Damage to<br/>ship</li></ul>   | High                                           | Med           | Low      |  |  |
|                                |                                                                               | ■ Fireball                             | Med                                            | Low           | Very Low |  |  |

Very low – little or no property damage or injuries Low – minor property damage and minor injuries Medium – potential for injuries and property damage High – major injuries and significant damage to property



#### Suggested Risk-based Assessment Approach for LNG Carrier Spills





#### **LNG Spill Risk Management Analysis**

### Risks can be responsibly managed through a combination of approaches:

- Improve risk prevention measures
  - Earlier ship interdiction, boardings, and searches; positive vessel control during transit; port traffic control measures; safety and security zones and surveillance; or operational changes
- Locate LNG terminals where risks to public safety, infrastructures, and energy security are minimized
- Improve LNG safety and security systems
- Improve emergency response, evacuation, and mitigation strategies





- Though limitations in data and modeling exist for LNG spills, current tools, used as identified in the guidance, can help identify and mitigate hazards to the public from a possible spill. As better models and data become available, they can be incorporated into the guidance.
- Consequences from accidental spills using current safety and security practices are generally low.
- Consequences of an intentional breach, absent aggressive prevention strategies, can be more severe than from accidents. The most significant impacts exist within about 500 m of a spill, with much lower impacts at distances beyond 1600 m, even for very large spills.
- Risk-based approaches should be developed in cooperation with stakeholders to reduce risks to public safety and property and compatible with site-specific protection goals.



## LNG Spill Analysis and Risk Management Guidance

#### **Zone 1 (High hazard areas)**

- Use appropriate and validated analytical models as necessary, especially where interaction with critical infrastructures, terrain, etc. is possible
- Risk prevention and mitigation and emergency response strategies are very important and should be closely coordinated

#### **Zone 2 (Intermediate hazard areas)**

 Similar to Zone 1 but less rigorous modeling and risk management operations and strategies required

#### Zone 3 (Low hazard areas)

 Use of simpler models generally appropriate and nominal risk management operations needed



## Report Guidance Designed to Help Sites Evaluate LNG Import Issues

Report provides guidance on assessing site-specific LNG terminal safety and security concerns:

- Site-specific issues
  - location, closeness to critical infrastructures or residential or commercial areas, and available resources
- Assessing potential threats and issues
- Cooperating with stakeholders, public safety, and public officials to identify site "protection goals"
- Modeling and analysis approaches appropriate for a given site, location, or operations
- Assessing system safeguards and protective measures
- Managing risks through cooperative prevention and mitigation to ensure a reliable energy supply while being protective of public safety and property

